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Files

All materials today are at:
https://bit.ly/ustidpo
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Summary from Last Workshop

Let’s look at what we learnt last time.
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Summary from Last Workshop

Examples of valid integers
a = 5
b = 1000000
c = -1984

Examples of valid strings
a = "5"
b = "haha"
c = 'some words'

Arithmetic Operators
Some basic and commonly-used operators:

+: add -: minus,
*: multiply /: divide
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Summary from Last Workshop

The print() statement
print(*objects)

*objects - the things you want to print (put on the screen)

The input() statement
input(prompt)

where prompt is quite literally what it means. It prints the prompt, then
returns the value inputted as a string.
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Summary from Last Workshop

Comparison Operators
There are 6 comparison operators:

Operator Meaning
== equal to
> larger than
>= larger than or equal to
< smaller than
<= smaller than or equal to
!= not equal to
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Summary from Last Workshop

if, elif and else
if, elif and else clauses are used to decide whether some code should
be executed. Whenever one is fulfilled, all others are ignored.
if condition1: # if condition1 is true

# Do something, ignore all elif and else below

elif condition2: # if condition2 is true
# Do something, ignore all elif and else below

elif condition3: # if condition3 is true
# Do something, ignore all elif and else below

else: # if all the conditions above are false
# Do something
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Summary from Last Workshop

The and logic operator
The and operator makes it so that both conditions have to be fulfilled in
order for the code it is under to execute.

The or logic operator
The or operator makes it so that only 1 of the conditions have to be
fulfilled in order for the code it is under to execute.

The not logic operator
The not operator reverses the condition is it attached to.

Multiple logic operators
One can chain multiple logic operators together, but to be safe add
brackets () to make sure the condition works as intended.

Game Programming using Python HKUST Future-Ready Scholars May 2024 8/45



World of Game Coding

Game (Software)

Program (Code) Multimedia

Functions

Decision Making Loops

Input/Output Variables
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Contents

Program (Code)

Functions

Decision Making Loops

Input/Output Variables
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More on Boolean values

There are 2 Boolean values in existence: True and False.
The meaning of them are very similar to their English counterparts.
status = True
if status:

print("status is True")
else:

print("status is False")
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More on Boolean values

Another example:
game_over = False
if not game_over:

print("Continue your game!")
else:

print("Game Over!")
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Lists

Imagine you have a bunch of variables you want to store. For example, if
you have a bunch of people’s names.
name0 = "Chris Wong"
name1 = "Desmond Tsoi"
name2 = "Phoebe Mok"
name3 = "Nancy Ip"

That is annoying to store and access.
What if instead, we store it in the same thing, as a... list?
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Lists

names = ["Chris Wong", "Desmond Tsoi",
"Phoebe Mok", "Nancy Ip"]

Lists are declared by surrounding the items with [ ], and separating each
item with a comma.
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Lists

What we are going to learn with lists:
Getting elements
Editing elements
List with print()

Length of a list
Appending an element
in operator
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Lists

We can get the name from a list by getting the corresponding item.
How? With list[index].
The first item in the list is the 0th item, second is 1st item, etc...
We call this zero-indexing.

Note: Some programming languages use one-indexing instead.

If you approach another programming language, be careful.

Game Programming using Python HKUST Future-Ready Scholars May 2024 16/45



Lists

names = ["Chris Wong", "Desmond Tsoi",
"Phoebe Mok", "Nancy Ip"]

print(names[0], names[1], names[2], names[3])
# Output: Chris Wong Desmond Tsoi Phoebe Mok Nancy Ip
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Lists

Another example:
# Indices: 0 1 2 3 4 5
numbers = [0, 1, 1, 2, 3, 5]
print(numbers[0], numbers[1], numbers[2],

numbers[3], numbers[4], numbers[5])
# Output: 0 1 1 2 3 5

print(numbers)
# Output: [0, 1, 1, 2, 3, 5]
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Lists

One more example in the context of Hangman:
# Indices: 0 1 2 3 4 5
word_list = ["p", "y", "t", "h", "o", "n"]
print(word_list[0], word_list[1], word_list[2],

word_list[3], word_list[4], word_list[5])
# Output: p y t h o n

print(word_list)
# Output: ['p', 'y', 't', 'h', 'o', 'n']
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Lists

To edit an element of a list, assign the new value to the correct index.
numbers = [0, 1, 1, 2, 3, 5]
print(numbers) # [0, 1, 1, 2, 3, 5]
numbers[1] = 100 # Edit the second element (index 1)
print(numbers)
# Output: [0, 100, 1, 2, 3, 5]
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Lists

Another example in the context of Hangman:
word_list = ["p", "y", "t", "h", "o", "n"]
print(word_list) # ['p', 'y', 't', 'h', 'o', 'n']
word_list[3] = "a" # Edit the fourth element (index 3)
print(word_list)
# Output: ['p', 'y', 't', 'a', 'o', 'n']
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Lists

To get the length of a list, we can use the len() function.
numbers = [0, 1, 1, 2, 3, 5]
print(len(numbers)) # 6
word_list = ["p", "y", "t", "h", "o", "n"]
print(len(word_list)) # 6
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Lists

To add an element to the end to a list, we use the append(value) list
function.
numbers = [0, 1, 1, 2, 3, 5]
print(numbers, "length:", len(numbers))
# Output: [0, 1, 1, 2, 3, 5] length: 6
numbers.append(100) # Add 100 to the end of the list
print(numbers, "length:", len(numbers))
# Output: [0, 1, 1, 2, 3, 5, 100] length: 7
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Lists

Another example in the context of Hangman:
word_list = ["p", "y", "t", "h", "o", "n"]
print(word_list, "length:", len(word_list))
# Output: ['p', 'y', 't', 'h', 'o', 'n'] length: 6
word_list.append("a") # Add "a" to the end of the list
print(word_list, "length:", len(word_list))
# Output: ['p', 'y', 't', 'h', 'o', 'n', 'a'] length: 7
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Lists

We can check if an element is in a list with the in operator.
numbers = [0, 1, 1, 2, 3, 5]
if 0 in numbers:

print("0 is in numbers.") # This line is run
else:

print("0 is not in numbers.")
if 8 in numbers:

print("8 is in numbers.")
else:

print("8 is not in numbers.") # This line is run
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Lists

Another example in the context of Hangman:
word_list = ["p", "y", "t", "h", "o", "n"]
if "y" in word_list:

print("y is in the word list.") # This line is run
else:

print("y is not in the word list.")
if "a" in word_list:

print("a is in the word list.")
else:

print("a is not in the word list.") # This line is run
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More about the in operator

The in operator works very similarly when applied to strings.
word = "python"
if "y" in word:

print("y is in the word.") # This line is run
else:

print("y is not in the word.")
if "a" in word:

print("a is in the word.")
else:

print("a is not in the word.") # This line is run
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More about the in operator

You can combine the not and in operators.
word = "python"
if "a" not in word:

print("a is not in the word.") # This line is run
else:

print("a is in the word.")
word_list = ["U", "S", "T"]
if "u" not in word_list:

print("u is not in the list.") # This line is run
else:

print("u is in the list.")
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Contents

Program (Code)

Functions

Decision Making Loops

Input/Output Variables
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Loops

What do you do if you want to do something repeatedly in code?
print("Count:", 0)
print("Count:", 1)
print("Count:", 2)
print("Count:", 3)
print("Count:", 4)
print("Count:", 5)
print("Count:", 6)
print("Count:", 7)
print("Count:", 8)
print("Count:", 9)
print("Done.")

Let’s turn this into a loop.
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Loops - while

Example:
i = 0 # Initialising i as 0
while i < 10:

print("Count:", i)
i = i + 1

print("Done.")

Let’s run through it together.
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Loops - while

Example:
i = 0
while i < 10: # i is 0, which is smaller than 10

print("Count:", i)
i = i + 1

print("Done.")
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Loops - while

Example:
i = 0
while i < 10:

print("Count:", i) # Count: 0
i = i + 1

print("Done.")
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Loops - while

Example:
i = 0
while i < 10:

print("Count:", i)
i = i + 1 # i goes from 0 to 1, then we go back up

print("Done.")
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Loops - while

Example:
i = 0
while i < 10: # i is 1, which is smaller than 10

print("Count:", i)
i = i + 1

print("Done.")
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Loops - while

Example:
i = 0
while i < 10:

print("Count:", i) # Count: 1
i = i + 1

print("Done.")
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Loops - while

Example:
i = 0
while i < 10:

print("Count:", i)
i = i + 1 # i goes from 1 to 2, then we go back up

print("Done.")
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Loops - while

Example:
i = 0
while i < 10: # i is 2, which is smaller than 10

print("Count:", i)
i = i + 1

print("Done.")
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Loops - while

Example:
i = 0
while i < 10:

print("Count:", i) # Count: 2
i = i + 1

print("Done.")
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Loops - while

Example:
i = 0
while i < 10:

print("Count:", i)
i = i + 1 # i goes from 2 to 3, then we go back up

print("Done.")

Game Programming using Python HKUST Future-Ready Scholars May 2024 31/45



Loops - while

Example:
i = 0
while i < 10: # i is 3, which is smaller than 10

print("Count:", i)
i = i + 1

print("Done.")

This goes on and on. . .
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Loops - while

Example:
i = 0
while i < 10: # i is 9, which is smaller than 10

print("Count:", i)
i = i + 1

print("Done.")
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Loops - while

Example:
i = 0
while i < 10:

print("Count:", i) # Count: 9
i = i + 1

print("Done.")

Game Programming using Python HKUST Future-Ready Scholars May 2024 31/45



Loops - while

Example:
i = 0
while i < 10:

print("Count:", i)
i = i + 1 # i goes from 9 to 10, then we go back up

print("Done.")
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Loops - while

Example:
i = 0
while i < 10: # i is 10, which is NOT smaller than 10

print("Count:", i)
i = i + 1

print("Done.")
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Loops - while

Example:
i = 0
while i < 10:

print("Count:", i)
i = i + 1

print("Done.") # "Done." is printed
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Loops - while

Example:
i = 0
while i < 10:
␣␣␣␣print("Count:", i)
␣␣␣␣i = i + 1
print("Done.")

Indentation
Just like if-clauses, the indentation must be consistent for statements in
the loop. This also applies to for loops, which we will get into very soon.

Game Programming using Python HKUST Future-Ready Scholars May 2024 32/45



Loops - while

Example in the context of Hangman:
max = 6
wrong_guess = 0
while wrong_guess < max:

print("You have", max - wrong_guess, "guesses left.")
# Some more code to decide if the guess is wrong
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Loops - for

Example:
for i in range(10):

print("Count:", i)
print("Done.")

Python range
Python range is a thing of mystery. When you do range(n), where n is an
integer, Python generates a range of integers from 0 to n - 1.
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Loops - for

Example:
for i in range(10):

print("Count:", i)
print("Done.")

i=0 i=1 i=2 · · · i=8 i=9
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Loops - for

for i in range(10):
print("Count:", i)

print("Done.")

is equivalent to

i = 0
while i < 10:

print("Count:", i)
i = i + 1

print("Done.")

Both loops go from 0 to 9, and give identical output.
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Loops - for

Another example:
for i in range(3):

print(i * i) # Print the square
# Output: 0
# 1
# 4
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Loops - for

Let’s combine lists with a for loop.
word = ["p", "y", "t", "h", "o", "n"]
for i in range(len(words)):

print(word[i]) # Print word[i]
# Output: p
# y
# t
# h
# o
# n

This is one way we go through a list.
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Loops - for

Instead of using the index, there is another way to go through a list:
word = ["p", "y", "t", "h", "o", "n"]
for i in word:

print(i) # Print the element
# Output: p
# y
# t
# h
# o
# n

The output is identical to the previous example.
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Summary

Boolean values
There are only 2 Boolean values: True and False.
They are very similar to their English counterpart and True/False are
opposites.

Lists
Lists are represented with [ ] to hold multiple variables, where the i th item
is at index i − 1.

Lists with functions
If a list is called l, one can:

print the list with print(l).
get the length of l with len(l).
get/edit the element at index i with l[i].
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Summary

List functions
If a list is called l, one can:

append a value v to l with l.append(v).
use the in operator to check if a value v is in a list.
e.g.: if v in l:

in operator
You can use in operator for strings too, and even combine it with the not
operator.
w = "HKUST"
if "H" not in w:

print("No H.")
else:

print("Yes H.") # This line is run.
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Summary

while loops
while condition:

# Do code

Code in the while block are run while the condition is fulfilled.
Do make sure that the while loop can be exited.
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Summary

for loops and range
n = 5 # Example
for i in range(n):

# Do code with each number from 0 to n - 1

range(n) returns a range of integers that starts from 0 and ends at n - 1.

for loops and lists
l = [...] # A list with items
for i in l:

# Do code with each item in the list

for loops can be directly applied onto lists.
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Google Colab

Login to your Gmail account.

Then head to
https://colab.research.google.com/
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Jupyter Notebook

Now upload your Jupyter Notebook file with Files → Open Notebook.

Upload the file Hangman.ipynb.
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Using Jupyter Notebook

You can type your code in these blocks. We call these blocks code cells.

You can run a code cell with the button on the left.
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The End
Thank you!
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Additional content

Here are some additional content that we didn’t have time to mention in
the workshop.
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Lists

To insert an element to a particular position in a list, we use the insert()
list function.
The insert(i, value) inserts the value at index i, and push everything
after to the right.
numbers = [0, 1, 1, 2, 3, 5]
print(numbers, "length:", len(numbers))
# Output: [0, 1, 1, 2, 3, 5] length: 6
numbers.insert(2, 100) # Add 100 to index 2 of the list
print(numbers, "length:", len(numbers))
# Output: [0, 1, 100, 1, 2, 3, 5] length: 7
numbers.insert(7, 200) # Same as numbers.append(200)
print(numbers, "length:", len(numbers))
# Output: [0, 1, 100, 1, 2, 3, 5, 200] length: 8
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Lists

To remove an element from a list, we use the remove() list function.
The remove(value) function removes the first occurence of value.
numbers = [0, 1, 1, 2, 3, 5]
print(numbers, "length:", len(numbers))
# Output: [0, 1, 1, 2, 3, 5] length: 6
numbers.remove(1) # Remove the first occurence of number 1
print(numbers, "length:", len(numbers))
# Output: [0, 1, 2, 3, 5] length: 5
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Lists

The reverse() list function reverses a list’s contents.
numbers = [0, 1, 1, 2, 3, 5]
print(numbers, "length:", len(numbers))
# Output: [0, 1, 1, 2, 3, 5] length: 6
numbers.reverse() # Reverse the list
print(numbers, "length:", len(numbers))
# Output: [5, 3, 2, 1, 1, 0] length: 6
print(numbers[0])
# Output: 5
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Lists

The count(item) list function counts the number of occurence of item in
a list.
numbers = [0, 1, 1, 2, 3, 5]
print(numbers.count(1))
# Output: 2
print(numbers.count(100))
# Output: 0
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Lists

The index(item) list function finds the index of the first occurence of
item in a list.
numbers = [0, 1, 1, 2, 3, 5]
print(numbers.index(1))
# Output: 1
print(numbers.index(5))
# Output: 5
print(numbers.index(100))
# Output: No output, error, 100 is not in the list
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Lists

Combining in and list.index():
numbers = [0, 1, 1, 2, 3, 5]
if 5 in numbers:

print("The index of 5 in the list is", numbers.index(5))
# Output: The index of 5 in the list is 5
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Lists

The sort() list function sorts a list’s contents.
numbers = [6, 5, 1, 2, 3]
print(numbers, "length:", len(numbers))
# Output: [6, 5, 1, 2, 3] length: 5
print(numbers[0])
# Output: 6
numbers.sort() # Sort the list
print(numbers, "length:", len(numbers))
# Output: [1, 2, 3, 5, 6] length: 5
print(numbers[0])
# Output: 1
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Loops - while

We can also apply boolean values to while loops.
equal_to_5 = False
count = 0
while not equal_to_5:

if count == 5:
equal_to_5 = True

count = count + 1
print("Done.") # "Done." is printed
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Summary

The range in Python does not always have to start at 0.
for i in range(2, 5):

print(i)
# Output: 2
# 3
# 4

Custom range
Given range(a, b), a for loop will iterate from a to b - 1.
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Summary

List functions
If a list is called l, one can:

insert a value v to l at index i with l.insert(i, v).
remove the first occurence of a value v with l.remove(v).
reverse the list with l.reverse().
count the occurence of value v with l.count(v).
get the index of the first occurence of a value v with l.index(v).
sort the list with l.sort().
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Summary

Boolean conditions of while
You can apply boolean conditions to while loops.
status = True # Or False, or a condition with variables
while status: # Can also add "not"

# Do something

Custom range
Given range(a, b), a for loop will iterate from a to b - 1.
sum = 0
for i in range(100, 102):

sum = sum + i
print(sum) # Output: 201
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End of Additional Contents
Made in LATEX

Last updated: 29 Apr 2024
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