HKUST Future-Ready Scholars Introduction to Game Programming using Python

Part 2

4 May 2024

All materials today are at: https://bit.ly/ustidpo

۵	10.011 fears-horty Scoles × +		~ - ø х		
4	→ σ 0 8 https://www.ipeconightoda/spgm/stitips/tet	\$	ଡ • £ =		
	HKUST Future-Ready Scholars				
	Introduction to Game Programming using Python				
	Download files below!				
	Workshop Materials				
	Worshop 3) paper extension file (Refer to worshop basic classifications are not for definitions to export the Bio)				
	(e mix)				
	execution of entrymon (e rise				
	Additional Materials				
	Workshop 1. ingepriorsationy bolos				

Let's look at what we learnt last time.

Examples of valid integers

- a = 5
- b = 1000000
- c = -1984

Examples of valid strings

- a = "5"
- b = "haha"
- c = 'some words'

Arithmetic Operators

Some basic and commonly-used operators:

+: add -: minus,

*: multiply /: divide

The print() statement

print(*objects)

*objects - the things you want to print (put on the screen)

The input() statement

input(prompt)

where **prompt** is quite literally what it means. It prints the prompt, then returns the value inputted as a string.

Comparison Operators

There are 6 comparison operators:

Operator	Meaning
==	equal to
>	larger than
>=	larger than or equal to
<	smaller than
<=	smaller than or equal to
!=	not equal to

if, elif and else

if, elif and else clauses are used to decide whether some code should be executed. Whenever one is fulfilled, all others are ignored.

if condition1: # if condition1 is true

Do something, ignore all elif and else below

elif condition2: # if condition2 is true
 # Do something, ignore all elif and else below

elif condition3: # if condition3 is true
 # Do something, ignore all elif and else below

else: # if all the conditions above are false
 # Do something

The and logic operator

The and operator makes it so that both conditions have to be fulfilled in order for the code it is under to execute.

The or logic operator

The or operator makes it so that only 1 of the conditions have to be fulfilled in order for the code it is under to execute.

The not logic operator

The not operator reverses the condition is it attached to.

Multiple logic operators

One can chain multiple logic operators together, but to be safe add brackets () to make sure the condition works as intended.

World of Game Coding


```
There are 2 Boolean values in existence: True and False.
The meaning of them are very similar to their English counterparts.
status = True
if status:
    print("status is True")
else:
    print("status is False")
```

```
Another example:
game_over = False
if not game_over:
    print("Continue your game!")
else:
    print("Game Over!")
```

Imagine you have a bunch of variables you want to store. For example, if you have a bunch of people's names.

- name0 = "Chris Wong"
- name1 = "Desmond Tsoi"
- name2 = "Phoebe Mok"
- name3 = "Nancy Ip"

That is annoying to store and access.

What if instead, we store it in the same thing, as a... list?

Lists are declared by surrounding the items with $[\],$ and separating each item with a comma.

What we are going to learn with lists:

- Getting elements
- Editing elements
- List with print()
- Length of a list
- Appending an element
- in operator

We can get the name from a list by getting the corresponding item. How? With list[index]. The first item in the list is the 0th item, second is 1st item, etc... We call this zero-indexing.

Note: Some programming languages use one-indexing instead.

If you approach another programming language, be careful.

names = ["Chris Wong", "Desmond Tsoi", "Phoebe Mok", "Nancy Ip"] print(names[0], names[1], names[2], names[3]) # Output: Chris Wong Desmond Tsoi Phoebe Mok Nancy Ip

Another example:

```
print(numbers)
# Output: [0, 1, 1, 2, 3, 5]
```

One more example in the context of Hangman:

print(word_list)
Output: ['p', 'y', 't', 'h', 'o', 'n']

To edit an element of a list, assign the new value to the correct index. numbers = [0, 1, 1, 2, 3, 5] print(numbers) # [0, 1, 1, 2, 3, 5] numbers[1] = 100 # Edit the second element (index 1) print(numbers) # Output: [0, 100, 1, 2, 3, 5] Another example in the context of Hangman:

word_list = ["p", "y", "t", "h", "o", "n"]
print(word_list) # ['p', 'y', 't', 'h', 'o', 'n']
word_list[3] = "a" # Edit the fourth element (index 3)
print(word_list)
Output: ['p', 'y', 't', 'a', 'o', 'n']

To get the length of a list, we can use the len() function. numbers = [0, 1, 1, 2, 3, 5] print(len(numbers)) # 6 word_list = ["p", "y", "t", "h", "o", "n"] print(len(word_list)) # 6 To add an element to the end to a list, we use the append(value) list function.

numbers = [0, 1, 1, 2, 3, 5]
print(numbers, "length:", len(numbers))
Output: [0, 1, 1, 2, 3, 5] length: 6
numbers.append(100) # Add 100 to the end of the list
print(numbers, "length:", len(numbers))
Output: [0, 1, 1, 2, 3, 5, 100] length: 7

Another example in the context of Hangman:

word_list = ["p", "y", "t", "h", "o", "n"]
print(word_list, "length:", len(word_list))
Output: ['p', 'y', 't', 'h', 'o', 'n'] length: 6
word_list.append("a") # Add "a" to the end of the list
print(word_list, "length:", len(word_list))
Output: ['p', 'y', 't', 'h', 'o', 'n', 'a'] length: 7

```
We can check if an element is in a list with the in operator.
numbers = [0, 1, 1, 2, 3, 5]
if 0 in numbers:
    print("0 is in numbers.") # This line is run
else:
    print("0 is not in numbers.")
if 8 in numbers:
    print("8 is in numbers.")
else:
    print("8 is not in numbers.") # This line is run
```

Another example in the context of Hangman:

```
word_list = ["p", "y", "t", "h", "o", "n"]
if "y" in word_list:
    print("y is in the word list.") # This line is run
else:
    print("y is not in the word list.")
if "a" in word_list:
    print("a is in the word list.")
else:
    runt("a is not in the word list.")
```

print("a is not in the word list.") # This line is run

The in operator works very similarly when applied to strings.

```
word = "python"
if "y" in word:
    print("y is in the word.") # This line is run
else:
    print("y is not in the word.")
if "a" in word:
    print("a is in the word.")
else:
    print("a is not in the word.") # This line is run
```

You can combine the not and in operators.

```
word = "python"
if "a" not in word:
    print("a is not in the word.") # This line is run
else:
    print("a is in the word.")
word_list = ["U", "S", "T"]
if "u" not in word_list:
    print("u is not in the list.") # This line is run
else:
    print("u is in the list.")
```


What do you do if you want to do something repeatedly in code?

```
print("Count:", 0)
print("Count:", 1)
print("Count:", 2)
print("Count:", 3)
print("Count:", 4)
print("Count:", 5)
print("Count:", 6)
print("Count:", 7)
print("Count:", 8)
print("Count:", 9)
print("Done.")
Let's turn this into a loop.
```

```
Example:
i = 0 # Initialising i as 0
while i < 10:
    print("Count:", i)
    i = i + 1
print("Done.")
Let's run through it together.
```

```
i = 0
while i < 10: # i is 0, which is smaller than 10
    print("Count:", i)
    i = i + 1
print("Done.")</pre>
```

```
i = 0
while i < 10:
    print("Count:", i) # Count: 0
    i = i + 1
print("Done.")</pre>
```

i = 0
while i < 10:
 print("Count:", i)
 i = i + 1 # i goes from 0 to 1, then we go back up
print("Done.")</pre>

```
i = 0
while i < 10: # i is 1, which is smaller than 10
    print("Count:", i)
    i = i + 1
print("Done.")</pre>
```

```
i = 0
while i < 10:
    print("Count:", i) # Count: 1
    i = i + 1
print("Done.")</pre>
```
i = 0
while i < 10:
 print("Count:", i)
 i = i + 1 # i goes from 1 to 2, then we go back up
print("Done.")</pre>

```
i = 0
while i < 10: # i is 2, which is smaller than 10
    print("Count:", i)
    i = i + 1
print("Done.")</pre>
```

i = 0
while i < 10:
 print("Count:", i) # Count: 2
 i = i + 1
print("Done.")</pre>

i = 0
while i < 10:
 print("Count:", i)
 i = i + 1 # i goes from 2 to 3, then we go back up
print("Done.")</pre>

```
Example:
```

```
i = 0
while i < 10: # i is 3, which is smaller than 10
    print("Count:", i)
    i = i + 1
print("Done.")
This goes on and on...</pre>
```

```
i = 0
while i < 10: # i is 9, which is smaller than 10
    print("Count:", i)
    i = i + 1
print("Done.")</pre>
```

```
i = 0
while i < 10:
    print("Count:", i) # Count: 9
    i = i + 1
print("Done.")</pre>
```

i = 0
while i < 10:
 print("Count:", i)
 i = i + 1 # i goes from 9 to 10, then we go back up
print("Done.")</pre>

```
i = 0
while i < 10: # i is 10, which is NOT smaller than 10
    print("Count:", i)
    i = i + 1
print("Done.")</pre>
```

i = 0
while i < 10:
 print("Count:", i)
 i = i + 1
print("Done.") # "Done." is printed</pre>

```
i = 0
while i < 10:
_____print("Count:", i)
_____i = i + 1
print("Done.")</pre>
```

Indentation

Just like if-clauses, the indentation must be consistent for statements in the loop. This also applies to for loops, which we will get into very soon.

Example in the context of Hangman:

```
max = 6
wrong_guess = 0
while wrong_guess < max:
    print("You have", max - wrong_guess, "guesses left.")
    # Some more code to decide if the guess is wrong</pre>
```

```
for i in range(10):
    print("Count:", i)
print("Done.")
```

Python range

Python range is a thing of mystery. When you do range(n), where n is an integer, Python generates a *range* of integers from 0 to n - 1.

```
for i in range(10):
    print("Count:", i)
print("Done.")
```



```
for i in range(10):
    print("Count:", i)
print("Done.")
```

is equivalent to

```
i = 0
while i < 10:
    print("Count:", i)
    i = i + 1
print("Done.")</pre>
```

Both loops go from 0 to 9, and give identical output.

Another example:

for i in range(3):
 print(i * i) # Print the square
Output: 0
1
4

```
Let's combine lists with a for loop.
word = ["p", "y", "t", "h", "o", "n"]
for i in range(len(words)):
    print(word[i]) # Print word[i]
  Output: p
#
#
           у
#
           t
#
           h
#
           0
#
           n
```

This is one way we go through a list.

Instead of using the index, there is another way to go through a list: word = ["p", "y", "t", "h", "o", "n"] for i in word: print(i) # Print the element Output: p # # у # t # h # 0 # n

The output is identical to the previous example.

Boolean values

There are only 2 Boolean values: True and False. They are very similar to their English counterpart and True/False are opposites.

Lists

Lists are represented with [] to hold multiple variables, where the i^{th} item is at index i - 1.

Lists with functions

If a list is called 1, one can:

- print the list with print(1).
- get the length of 1 with len(1).
- get/edit the element at index i with 1[i].

Summary

List functions

If a list is called 1, one can:

- append a value v to 1 with 1.append(v).
- use the in operator to check if a value v is in a list.

e.g.: if v in l:

in operator

You can use in operator for strings too, and even combine it with the not operator.

```
w = "HKUST"
if "H" not in w:
    print("No H.")
else:
    print("Yes H.") # This line is run.
```

while loops

while condition:

Do code

Code in the while block are run while the condition is fulfilled. Do make sure that the while loop can be exited.

for loops and range

- n = 5 # Example
- for i in range(n):
 - # Do code with each number from 0 to n 1

range(n) returns a range of integers that starts from 0 and ends at n - 1.

for loops and lists

```
l = [...] # A list with items
```

for i in 1:

Do code with each item in the list

for loops can be directly applied onto lists.

Login to your Gmail account.

Then head to https://colab.research.google.com/

Now upload your Jupyter Notebook file with Files \rightarrow Open Notebook.

Upload the file Hangman.ipynb.

You can type your code in these blocks. We call these blocks code cells.

You can run a code cell with the button on the left.

The End Thank you!

Here are some additional content that we didn't have time to mention in the workshop.

To insert an element to a particular position in a list, we use the insert() list function.

The insert(i, value) inserts the value at index i, and push everything after to the right.

numbers = [0, 1, 1, 2, 3, 5]
print(numbers, "length:", len(numbers))
Output: [0, 1, 1, 2, 3, 5] length: 6
numbers.insert(2, 100) # Add 100 to index 2 of the list
print(numbers, "length:", len(numbers))
Output: [0, 1, 100, 1, 2, 3, 5] length: 7
numbers.insert(7, 200) # Same as numbers.append(200)
print(numbers, "length:", len(numbers))
Output: [0, 1, 100, 1, 2, 3, 5, 200] length: 8

To remove an element from a list, we use the remove() list function. The remove(value) function removes the first occurence of value. numbers = [0, 1, 1, 2, 3, 5] print(numbers, "length:", len(numbers)) # Output: [0, 1, 1, 2, 3, 5] length: 6 numbers.remove(1) # Remove the first occurence of number 1 print(numbers, "length:", len(numbers)) # Output: [0, 1, 2, 3, 5] length: 5

```
The reverse() list function reverses a list's contents.
numbers = [0, 1, 1, 2, 3, 5]
print(numbers, "length:", len(numbers))
# Output: [0, 1, 1, 2, 3, 5] length: 6
numbers.reverse() # Reverse the list
print(numbers, "length:", len(numbers))
# Output: [5, 3, 2, 1, 1, 0] length: 6
print(numbers[0])
# Output: 5
```

The count(item) list function counts the number of occurence of item in a list.

```
numbers = [0, 1, 1, 2, 3, 5]
print(numbers.count(1))
# Output: 2
print(numbers.count(100))
# Output: 0
```

The index(item) list function finds the index of the first occurence of item in a list.

```
numbers = [0, 1, 1, 2, 3, 5]
print(numbers.index(1))
# Output: 1
print(numbers.index(5))
# Output: 5
print(numbers.index(100))
# Output: No output, error, 100 is not in the list
```

Combining in and list.index():
numbers = [0, 1, 1, 2, 3, 5]
if 5 in numbers:
 print("The index of 5 in the list is", numbers.index(5))
Output: The index of 5 in the list is 5

```
The sort() list function sorts a list's contents.
numbers = [6, 5, 1, 2, 3]
print(numbers, "length:", len(numbers))
# Output: [6, 5, 1, 2, 3] length: 5
print(numbers[0])
# Output: 6
numbers.sort() # Sort the list
print(numbers, "length:", len(numbers))
# Output: [1, 2, 3, 5, 6] length: 5
print(numbers[0])
# Output: 1
```


S-10/S-15
We can also apply boolean values to while loops.

```
equal_to_5 = False
count = 0
while not equal_to_5:
    if count == 5:
        equal_to_5 = True
    count = count + 1
print("Done.") # "Done." is printed
```

The range in Python does not always have to start at 0.

Custom range

Given range(a, b), a for loop will iterate from a to b - 1.

List functions

If a list is called 1, one can:

- insert a value v to 1 at index i with 1.insert(i, v).
- remove the first occurence of a value v with 1.remove(v).
- reverse the list with l.reverse().
- count the occurence of value v with l.count(v).
- get the index of the first occurence of a value v with l.index(v).
- sort the list with l.sort().

Boolean conditions of while

```
You can apply boolean conditions to while loops.
```

```
status = True # Or False, or a condition with variables
while status: # Can also add "not"
    # Do something
```

Custom range

```
Given range(a, b), a for loop will iterate from a to b - 1.
sum = 0
for i in range(100, 102):
    sum = sum + i
print(sum) # Output: 201
```

End of Additional Contents Made in LATEX Last updated: 29 Apr 2024