
HKUST Future-Ready Scholars
Introduction to Game Programming using Python

Part 2

4 May 2024

Game Programming using Python HKUST Future-Ready Scholars May 2024 1/45

Files

All materials today are at:
https://bit.ly/ustidpo

Game Programming using Python HKUST Future-Ready Scholars May 2024 2/45

https://bit.ly/ustidpo

Summary from Last Workshop

Let’s look at what we learnt last time.

Game Programming using Python HKUST Future-Ready Scholars May 2024 3/45

Summary from Last Workshop

Examples of valid integers
a = 5
b = 1000000
c = -1984

Examples of valid strings
a = "5"
b = "haha"
c = 'some words'

Arithmetic Operators
Some basic and commonly-used operators:

+: add -: minus,
*: multiply /: divide

Game Programming using Python HKUST Future-Ready Scholars May 2024 4/45

Summary from Last Workshop

The print() statement
print(*objects)

*objects - the things you want to print (put on the screen)

The input() statement
input(prompt)

where prompt is quite literally what it means. It prints the prompt, then
returns the value inputted as a string.

Game Programming using Python HKUST Future-Ready Scholars May 2024 5/45

Summary from Last Workshop

Comparison Operators
There are 6 comparison operators:

Operator Meaning
== equal to
> larger than
>= larger than or equal to
< smaller than
<= smaller than or equal to
!= not equal to

Game Programming using Python HKUST Future-Ready Scholars May 2024 6/45

Summary from Last Workshop

if, elif and else
if, elif and else clauses are used to decide whether some code should
be executed. Whenever one is fulfilled, all others are ignored.
if condition1: # if condition1 is true

Do something, ignore all elif and else below

elif condition2: # if condition2 is true
Do something, ignore all elif and else below

elif condition3: # if condition3 is true
Do something, ignore all elif and else below

else: # if all the conditions above are false
Do something

Game Programming using Python HKUST Future-Ready Scholars May 2024 7/45

Summary from Last Workshop

The and logic operator
The and operator makes it so that both conditions have to be fulfilled in
order for the code it is under to execute.

The or logic operator
The or operator makes it so that only 1 of the conditions have to be
fulfilled in order for the code it is under to execute.

The not logic operator
The not operator reverses the condition is it attached to.

Multiple logic operators
One can chain multiple logic operators together, but to be safe add
brackets () to make sure the condition works as intended.

Game Programming using Python HKUST Future-Ready Scholars May 2024 8/45

World of Game Coding

Game (Software)

Program (Code) Multimedia

Functions

Decision Making Loops

Input/Output Variables

Game Programming using Python HKUST Future-Ready Scholars May 2024 9/45

Contents

Program (Code)

Functions

Decision Making Loops

Input/Output Variables

Game Programming using Python HKUST Future-Ready Scholars May 2024 10/45

More on Boolean values

There are 2 Boolean values in existence: True and False.
The meaning of them are very similar to their English counterparts.
status = True
if status:

print("status is True")
else:

print("status is False")

Game Programming using Python HKUST Future-Ready Scholars May 2024 11/45

More on Boolean values

Another example:
game_over = False
if not game_over:

print("Continue your game!")
else:

print("Game Over!")

Game Programming using Python HKUST Future-Ready Scholars May 2024 12/45

Lists

Imagine you have a bunch of variables you want to store. For example, if
you have a bunch of people’s names.
name0 = "Chris Wong"
name1 = "Desmond Tsoi"
name2 = "Phoebe Mok"
name3 = "Nancy Ip"

That is annoying to store and access.
What if instead, we store it in the same thing, as a... list?

Game Programming using Python HKUST Future-Ready Scholars May 2024 13/45

Lists

names = ["Chris Wong", "Desmond Tsoi",
"Phoebe Mok", "Nancy Ip"]

Lists are declared by surrounding the items with [], and separating each
item with a comma.

Game Programming using Python HKUST Future-Ready Scholars May 2024 14/45

Lists

What we are going to learn with lists:
Getting elements
Editing elements
List with print()

Length of a list
Appending an element
in operator

Game Programming using Python HKUST Future-Ready Scholars May 2024 15/45

Lists

We can get the name from a list by getting the corresponding item.
How? With list[index].
The first item in the list is the 0th item, second is 1st item, etc...
We call this zero-indexing.

Note: Some programming languages use one-indexing instead.

If you approach another programming language, be careful.

Game Programming using Python HKUST Future-Ready Scholars May 2024 16/45

Lists

names = ["Chris Wong", "Desmond Tsoi",
"Phoebe Mok", "Nancy Ip"]

print(names[0], names[1], names[2], names[3])
Output: Chris Wong Desmond Tsoi Phoebe Mok Nancy Ip

Game Programming using Python HKUST Future-Ready Scholars May 2024 17/45

Lists

Another example:
Indices: 0 1 2 3 4 5
numbers = [0, 1, 1, 2, 3, 5]
print(numbers[0], numbers[1], numbers[2],

numbers[3], numbers[4], numbers[5])
Output: 0 1 1 2 3 5

print(numbers)
Output: [0, 1, 1, 2, 3, 5]

Game Programming using Python HKUST Future-Ready Scholars May 2024 18/45

Lists

One more example in the context of Hangman:
Indices: 0 1 2 3 4 5
word_list = ["p", "y", "t", "h", "o", "n"]
print(word_list[0], word_list[1], word_list[2],

word_list[3], word_list[4], word_list[5])
Output: p y t h o n

print(word_list)
Output: ['p', 'y', 't', 'h', 'o', 'n']

Game Programming using Python HKUST Future-Ready Scholars May 2024 19/45

Lists

To edit an element of a list, assign the new value to the correct index.
numbers = [0, 1, 1, 2, 3, 5]
print(numbers) # [0, 1, 1, 2, 3, 5]
numbers[1] = 100 # Edit the second element (index 1)
print(numbers)
Output: [0, 100, 1, 2, 3, 5]

Game Programming using Python HKUST Future-Ready Scholars May 2024 20/45

Lists

Another example in the context of Hangman:
word_list = ["p", "y", "t", "h", "o", "n"]
print(word_list) # ['p', 'y', 't', 'h', 'o', 'n']
word_list[3] = "a" # Edit the fourth element (index 3)
print(word_list)
Output: ['p', 'y', 't', 'a', 'o', 'n']

Game Programming using Python HKUST Future-Ready Scholars May 2024 21/45

Lists

To get the length of a list, we can use the len() function.
numbers = [0, 1, 1, 2, 3, 5]
print(len(numbers)) # 6
word_list = ["p", "y", "t", "h", "o", "n"]
print(len(word_list)) # 6

Game Programming using Python HKUST Future-Ready Scholars May 2024 22/45

Lists

To add an element to the end to a list, we use the append(value) list
function.
numbers = [0, 1, 1, 2, 3, 5]
print(numbers, "length:", len(numbers))
Output: [0, 1, 1, 2, 3, 5] length: 6
numbers.append(100) # Add 100 to the end of the list
print(numbers, "length:", len(numbers))
Output: [0, 1, 1, 2, 3, 5, 100] length: 7

Game Programming using Python HKUST Future-Ready Scholars May 2024 23/45

Lists

Another example in the context of Hangman:
word_list = ["p", "y", "t", "h", "o", "n"]
print(word_list, "length:", len(word_list))
Output: ['p', 'y', 't', 'h', 'o', 'n'] length: 6
word_list.append("a") # Add "a" to the end of the list
print(word_list, "length:", len(word_list))
Output: ['p', 'y', 't', 'h', 'o', 'n', 'a'] length: 7

Game Programming using Python HKUST Future-Ready Scholars May 2024 24/45

Lists

We can check if an element is in a list with the in operator.
numbers = [0, 1, 1, 2, 3, 5]
if 0 in numbers:

print("0 is in numbers.") # This line is run
else:

print("0 is not in numbers.")
if 8 in numbers:

print("8 is in numbers.")
else:

print("8 is not in numbers.") # This line is run

Game Programming using Python HKUST Future-Ready Scholars May 2024 25/45

Lists

Another example in the context of Hangman:
word_list = ["p", "y", "t", "h", "o", "n"]
if "y" in word_list:

print("y is in the word list.") # This line is run
else:

print("y is not in the word list.")
if "a" in word_list:

print("a is in the word list.")
else:

print("a is not in the word list.") # This line is run

Game Programming using Python HKUST Future-Ready Scholars May 2024 26/45

More about the in operator

The in operator works very similarly when applied to strings.
word = "python"
if "y" in word:

print("y is in the word.") # This line is run
else:

print("y is not in the word.")
if "a" in word:

print("a is in the word.")
else:

print("a is not in the word.") # This line is run

Game Programming using Python HKUST Future-Ready Scholars May 2024 27/45

More about the in operator

You can combine the not and in operators.
word = "python"
if "a" not in word:

print("a is not in the word.") # This line is run
else:

print("a is in the word.")
word_list = ["U", "S", "T"]
if "u" not in word_list:

print("u is not in the list.") # This line is run
else:

print("u is in the list.")

Game Programming using Python HKUST Future-Ready Scholars May 2024 28/45

Contents

Program (Code)

Functions

Decision Making Loops

Input/Output Variables

Game Programming using Python HKUST Future-Ready Scholars May 2024 29/45

Loops

What do you do if you want to do something repeatedly in code?
print("Count:", 0)
print("Count:", 1)
print("Count:", 2)
print("Count:", 3)
print("Count:", 4)
print("Count:", 5)
print("Count:", 6)
print("Count:", 7)
print("Count:", 8)
print("Count:", 9)
print("Done.")

Let’s turn this into a loop.

Game Programming using Python HKUST Future-Ready Scholars May 2024 30/45

Loops - while

Example:
i = 0 # Initialising i as 0
while i < 10:

print("Count:", i)
i = i + 1

print("Done.")

Let’s run through it together.

Game Programming using Python HKUST Future-Ready Scholars May 2024 31/45

Loops - while

Example:
i = 0
while i < 10: # i is 0, which is smaller than 10

print("Count:", i)
i = i + 1

print("Done.")

Game Programming using Python HKUST Future-Ready Scholars May 2024 31/45

Loops - while

Example:
i = 0
while i < 10:

print("Count:", i) # Count: 0
i = i + 1

print("Done.")

Game Programming using Python HKUST Future-Ready Scholars May 2024 31/45

Loops - while

Example:
i = 0
while i < 10:

print("Count:", i)
i = i + 1 # i goes from 0 to 1, then we go back up

print("Done.")

Game Programming using Python HKUST Future-Ready Scholars May 2024 31/45

Loops - while

Example:
i = 0
while i < 10: # i is 1, which is smaller than 10

print("Count:", i)
i = i + 1

print("Done.")

Game Programming using Python HKUST Future-Ready Scholars May 2024 31/45

Loops - while

Example:
i = 0
while i < 10:

print("Count:", i) # Count: 1
i = i + 1

print("Done.")

Game Programming using Python HKUST Future-Ready Scholars May 2024 31/45

Loops - while

Example:
i = 0
while i < 10:

print("Count:", i)
i = i + 1 # i goes from 1 to 2, then we go back up

print("Done.")

Game Programming using Python HKUST Future-Ready Scholars May 2024 31/45

Loops - while

Example:
i = 0
while i < 10: # i is 2, which is smaller than 10

print("Count:", i)
i = i + 1

print("Done.")

Game Programming using Python HKUST Future-Ready Scholars May 2024 31/45

Loops - while

Example:
i = 0
while i < 10:

print("Count:", i) # Count: 2
i = i + 1

print("Done.")

Game Programming using Python HKUST Future-Ready Scholars May 2024 31/45

Loops - while

Example:
i = 0
while i < 10:

print("Count:", i)
i = i + 1 # i goes from 2 to 3, then we go back up

print("Done.")

Game Programming using Python HKUST Future-Ready Scholars May 2024 31/45

Loops - while

Example:
i = 0
while i < 10: # i is 3, which is smaller than 10

print("Count:", i)
i = i + 1

print("Done.")

This goes on and on. . .

Game Programming using Python HKUST Future-Ready Scholars May 2024 31/45

Loops - while

Example:
i = 0
while i < 10: # i is 9, which is smaller than 10

print("Count:", i)
i = i + 1

print("Done.")

Game Programming using Python HKUST Future-Ready Scholars May 2024 31/45

Loops - while

Example:
i = 0
while i < 10:

print("Count:", i) # Count: 9
i = i + 1

print("Done.")

Game Programming using Python HKUST Future-Ready Scholars May 2024 31/45

Loops - while

Example:
i = 0
while i < 10:

print("Count:", i)
i = i + 1 # i goes from 9 to 10, then we go back up

print("Done.")

Game Programming using Python HKUST Future-Ready Scholars May 2024 31/45

Loops - while

Example:
i = 0
while i < 10: # i is 10, which is NOT smaller than 10

print("Count:", i)
i = i + 1

print("Done.")

Game Programming using Python HKUST Future-Ready Scholars May 2024 31/45

Loops - while

Example:
i = 0
while i < 10:

print("Count:", i)
i = i + 1

print("Done.") # "Done." is printed

Game Programming using Python HKUST Future-Ready Scholars May 2024 31/45

Loops - while

Example:
i = 0
while i < 10:
␣␣␣␣print("Count:", i)
␣␣␣␣i = i + 1
print("Done.")

Indentation
Just like if-clauses, the indentation must be consistent for statements in
the loop. This also applies to for loops, which we will get into very soon.

Game Programming using Python HKUST Future-Ready Scholars May 2024 32/45

Loops - while

Example in the context of Hangman:
max = 6
wrong_guess = 0
while wrong_guess < max:

print("You have", max - wrong_guess, "guesses left.")
Some more code to decide if the guess is wrong

Game Programming using Python HKUST Future-Ready Scholars May 2024 33/45

Loops - for

Example:
for i in range(10):

print("Count:", i)
print("Done.")

Python range
Python range is a thing of mystery. When you do range(n), where n is an
integer, Python generates a range of integers from 0 to n - 1.

Game Programming using Python HKUST Future-Ready Scholars May 2024 34/45

Loops - for

Example:
for i in range(10):

print("Count:", i)
print("Done.")

i=0 i=1 i=2 · · · i=8 i=9

Game Programming using Python HKUST Future-Ready Scholars May 2024 35/45

Loops - for

for i in range(10):
print("Count:", i)

print("Done.")

is equivalent to

i = 0
while i < 10:

print("Count:", i)
i = i + 1

print("Done.")

Both loops go from 0 to 9, and give identical output.

Game Programming using Python HKUST Future-Ready Scholars May 2024 36/45

Loops - for

Another example:
for i in range(3):

print(i * i) # Print the square
Output: 0
1
4

Game Programming using Python HKUST Future-Ready Scholars May 2024 37/45

Loops - for

Let’s combine lists with a for loop.
word = ["p", "y", "t", "h", "o", "n"]
for i in range(len(words)):

print(word[i]) # Print word[i]
Output: p
y
t
h
o
n

This is one way we go through a list.

Game Programming using Python HKUST Future-Ready Scholars May 2024 38/45

Loops - for

Instead of using the index, there is another way to go through a list:
word = ["p", "y", "t", "h", "o", "n"]
for i in word:

print(i) # Print the element
Output: p
y
t
h
o
n

The output is identical to the previous example.

Game Programming using Python HKUST Future-Ready Scholars May 2024 39/45

Summary

Boolean values
There are only 2 Boolean values: True and False.
They are very similar to their English counterpart and True/False are
opposites.

Lists
Lists are represented with [] to hold multiple variables, where the i th item
is at index i − 1.

Lists with functions
If a list is called l, one can:

print the list with print(l).
get the length of l with len(l).
get/edit the element at index i with l[i].

Game Programming using Python HKUST Future-Ready Scholars May 2024 40/45

Summary

List functions
If a list is called l, one can:

append a value v to l with l.append(v).
use the in operator to check if a value v is in a list.
e.g.: if v in l:

in operator
You can use in operator for strings too, and even combine it with the not
operator.
w = "HKUST"
if "H" not in w:

print("No H.")
else:

print("Yes H.") # This line is run.

Game Programming using Python HKUST Future-Ready Scholars May 2024 41/45

Summary

while loops
while condition:

Do code

Code in the while block are run while the condition is fulfilled.
Do make sure that the while loop can be exited.

Game Programming using Python HKUST Future-Ready Scholars May 2024 42/45

Summary

for loops and range
n = 5 # Example
for i in range(n):

Do code with each number from 0 to n - 1

range(n) returns a range of integers that starts from 0 and ends at n - 1.

for loops and lists
l = [...] # A list with items
for i in l:

Do code with each item in the list

for loops can be directly applied onto lists.

Game Programming using Python HKUST Future-Ready Scholars May 2024 43/45

Google Colab

Login to your Gmail account.

Then head to
https://colab.research.google.com/

Game Programming using Python HKUST Future-Ready Scholars May 2024 44/45

https://colab.research.google.com/

Jupyter Notebook

Now upload your Jupyter Notebook file with Files → Open Notebook.

Upload the file Hangman.ipynb.

Game Programming using Python HKUST Future-Ready Scholars May 2024 45/45

Using Jupyter Notebook

You can type your code in these blocks. We call these blocks code cells.

You can run a code cell with the button on the left.

Game Programming using Python HKUST Future-Ready Scholars May 2024 46/45

The End
Thank you!

Game Programming using Python HKUST Future-Ready Scholars May 2024 47/45

Additional content

Here are some additional content that we didn’t have time to mention in
the workshop.

Game Programming using Python HKUST Future-Ready Scholars May 2024 S-1/S-15

Contents

Program (Code)

Functions

Decision Making Loops

Input/Output Variables

Game Programming using Python HKUST Future-Ready Scholars May 2024 S-2/S-15

Lists

To insert an element to a particular position in a list, we use the insert()
list function.
The insert(i, value) inserts the value at index i, and push everything
after to the right.
numbers = [0, 1, 1, 2, 3, 5]
print(numbers, "length:", len(numbers))
Output: [0, 1, 1, 2, 3, 5] length: 6
numbers.insert(2, 100) # Add 100 to index 2 of the list
print(numbers, "length:", len(numbers))
Output: [0, 1, 100, 1, 2, 3, 5] length: 7
numbers.insert(7, 200) # Same as numbers.append(200)
print(numbers, "length:", len(numbers))
Output: [0, 1, 100, 1, 2, 3, 5, 200] length: 8

Game Programming using Python HKUST Future-Ready Scholars May 2024 S-3/S-15

Lists

To remove an element from a list, we use the remove() list function.
The remove(value) function removes the first occurence of value.
numbers = [0, 1, 1, 2, 3, 5]
print(numbers, "length:", len(numbers))
Output: [0, 1, 1, 2, 3, 5] length: 6
numbers.remove(1) # Remove the first occurence of number 1
print(numbers, "length:", len(numbers))
Output: [0, 1, 2, 3, 5] length: 5

Game Programming using Python HKUST Future-Ready Scholars May 2024 S-4/S-15

Lists

The reverse() list function reverses a list’s contents.
numbers = [0, 1, 1, 2, 3, 5]
print(numbers, "length:", len(numbers))
Output: [0, 1, 1, 2, 3, 5] length: 6
numbers.reverse() # Reverse the list
print(numbers, "length:", len(numbers))
Output: [5, 3, 2, 1, 1, 0] length: 6
print(numbers[0])
Output: 5

Game Programming using Python HKUST Future-Ready Scholars May 2024 S-5/S-15

Lists

The count(item) list function counts the number of occurence of item in
a list.
numbers = [0, 1, 1, 2, 3, 5]
print(numbers.count(1))
Output: 2
print(numbers.count(100))
Output: 0

Game Programming using Python HKUST Future-Ready Scholars May 2024 S-6/S-15

Lists

The index(item) list function finds the index of the first occurence of
item in a list.
numbers = [0, 1, 1, 2, 3, 5]
print(numbers.index(1))
Output: 1
print(numbers.index(5))
Output: 5
print(numbers.index(100))
Output: No output, error, 100 is not in the list

Game Programming using Python HKUST Future-Ready Scholars May 2024 S-7/S-15

Lists

Combining in and list.index():
numbers = [0, 1, 1, 2, 3, 5]
if 5 in numbers:

print("The index of 5 in the list is", numbers.index(5))
Output: The index of 5 in the list is 5

Game Programming using Python HKUST Future-Ready Scholars May 2024 S-8/S-15

Lists

The sort() list function sorts a list’s contents.
numbers = [6, 5, 1, 2, 3]
print(numbers, "length:", len(numbers))
Output: [6, 5, 1, 2, 3] length: 5
print(numbers[0])
Output: 6
numbers.sort() # Sort the list
print(numbers, "length:", len(numbers))
Output: [1, 2, 3, 5, 6] length: 5
print(numbers[0])
Output: 1

Game Programming using Python HKUST Future-Ready Scholars May 2024 S-9/S-15

Contents

Program (Code)

Functions

Decision Making Loops

Input/Output Variables

Game Programming using Python HKUST Future-Ready Scholars May 2024 S-10/S-15

Loops - while

We can also apply boolean values to while loops.
equal_to_5 = False
count = 0
while not equal_to_5:

if count == 5:
equal_to_5 = True

count = count + 1
print("Done.") # "Done." is printed

Game Programming using Python HKUST Future-Ready Scholars May 2024 S-11/S-15

Summary

The range in Python does not always have to start at 0.
for i in range(2, 5):

print(i)
Output: 2
3
4

Custom range
Given range(a, b), a for loop will iterate from a to b - 1.

Game Programming using Python HKUST Future-Ready Scholars May 2024 S-12/S-15

Summary

List functions
If a list is called l, one can:

insert a value v to l at index i with l.insert(i, v).
remove the first occurence of a value v with l.remove(v).
reverse the list with l.reverse().
count the occurence of value v with l.count(v).
get the index of the first occurence of a value v with l.index(v).
sort the list with l.sort().

Game Programming using Python HKUST Future-Ready Scholars May 2024 S-13/S-15

Summary

Boolean conditions of while
You can apply boolean conditions to while loops.
status = True # Or False, or a condition with variables
while status: # Can also add "not"

Do something

Custom range
Given range(a, b), a for loop will iterate from a to b - 1.
sum = 0
for i in range(100, 102):

sum = sum + i
print(sum) # Output: 201

Game Programming using Python HKUST Future-Ready Scholars May 2024 S-14/S-15

End of Additional Contents
Made in LATEX

Last updated: 29 Apr 2024

Game Programming using Python HKUST Future-Ready Scholars May 2024 S-15/S-15

